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Abstract 

Predictions from species distribution models (SDMs) often fail when transferred to new geographic 

regions or time periods, limiting their utility for biodiversity forecasting under environmental 

change. This lack of transferability stems from functional responses in habitat selection, where 

animals respond to the same habitat differently depending on the availability of alternative habitats. 

The Generalized Functional Response (GFR) framework explicitly models selection coefficients as 

functions of habitat availability, but existing polynomial implementations face a fundamental trade-

off: low-order polynomials are too rigid to capture complex responses, while high-order 

polynomials overfit and transfer poorly. 

We developed flexible extensions of the GFR framework that replace global polynomial functions 

with local radial basis functions (RBF-GFR) and combined both approaches with modern machine 

learning methods: classification and regression trees (CART), random forests (RF) and extreme 

gradient boosting (XGBoost). We systematically compared the out-of-sample predictive 

performance of 12 modeling approaches using block cross-validation across four contrasting 

datasets—two individual-based simulations with known ecological mechanisms, wolf telemetry 

data and sparrow colony surveys. 

Ensemble methods combining functional response frameworks with RF or XGBoost consistently 

ranked in the top three performers across all datasets. Out-of-sample R² scores improved 

substantially over traditional GLMs, with increases from 0.25 to 0.85 in individual cases and typical 

gains of 0.20–0.50. The RBF-GFR-RF model showed the most consistent transferability. Critically, 
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ensemble averaging provided similar protection against overfitting as explicit regularization while 

achieving superior out-of-sample accuracy. Spatial predictions revealed that standard GLMs 

systematically under-predicted abundance hotspots, while unregularized flexible GFR models 

exaggerated extremes. 

Combining functional response theory with ensemble learning, particularly random forests, offers a 

practical path toward robust, transferable SDMs. Our comparative framework demonstrates that 

local basis functions paired with ensemble methods consistently outperform traditional approaches 

across diverse ecological systems and data types. The methods are computationally feasible for real-

world applications and provide substantial improvements in predicting species distributions under 

novel environmental conditions, addressing a critical limitation in current SDM practice. 

Keywords: ensemble learning, extreme gradient boosting, functional response, generalized 

functional response, habitat selection, machine learning, radial basis functions, random forests, 

species distribution models, transferability 

1. INTRODUCTION 

Species distribution models (SDMs) provide essential quantitative frameworks for predicting how 

organisms respond to environmental conditions, informing critical conservation decisions about 

protected area design, translocation strategies, and biodiversity responses to climate change 

(Guisan&Thuiller, 2005; Sofaer et al., 2019). As rates of environmental change accelerate, the 

urgency for reliable spatial predictions has intensified. However, the utility of SDMs hinges on a 

property that most current approaches lack transferability, the ability to predict accurately in 

environments that differ from those where models were fitted (Yates et al., 2018). 

Mounting evidence reveals a transferability crisis in SDM practice. When applied across regions, 

time periods, or environmental gradients, model predictions frequently deteriorate, with out-of-

sample accuracy dropping 30-50% compared to within-sample performance (Wenger & Olden, 

2012). Recent syntheses show that transferred SDMs sometimes perform worse than null models 

(Bahn & McGill, 2013). For example, climate envelope models fitted in European mountain 

ranges often fail catastrophically when applied to different mountain systems, despite similar 

environmental gradients (Randin et al., 2006). Likewise, models predicting invasive species 

distributions rarely transfer successfully across continents, even for the same species (Gallien et 

al., 2012). This transferability failure undermines SDMs precisely when reliable predictions are 

most critical—for anticipating species responses to novel climate spaces or predicting 

distributions in under-sampled regions (Elith et al., 2010). The inability to transfer models across 

contexts limits our capacity to anticipate and mitigate biodiversity loss under global change 

(Araújo &Guisan, 2006; Mouquet et al., 2015). 
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The fundamental cause of poor transferability lies in functional responses in habitat selection—the 

phenomenon whereby organisms respond to habitat features differently depending on the 

availability of alternative habitats (Mysterud& Ims, 1998; Matthiopoulos et al., 2011). Standard 

SDMs assume that species-habitat relationships are stationary: an animal's response to a given 

habitat type remains constant regardless of landscape context. This assumption is ecologically 

unrealistic and statistically untenable for mobile organisms with flexible behavior. Consider a 

predator encountering habitat with 40% forest cover. If forest is rare across the broader landscape, 

this patch may be intensively selected because it concentrates prey. However, in a landscape 

dominated by forest, the same local forest percentage may be avoided as the predator seeks access 

to diverse habitats or edge environments. The habitat feature (40% forest) is identical, but 

selection reverses based on landscape context. Standard SDMs, which treat selection coefficients 

as fixed parameters, cannot capture this context-dependency and therefore fail when transferred to 

landscapes with different habitat compositions. 

 

Figure 1. Functional responses in habitat selection prevent model transferability.  

(A) In landscapes where forests are scarce (20% availability), animals select forest habitat 

intensively (selection coefficient β = +2.4). (B) In forest-dominated landscapes (80% availability), 

the same species avoids forest (β = −0.4). (C) The selectivity function γ(x) shows how β changes 

continuously with landscape-scale forest availability. Points A and B correspond to panels A and 

B. Standard species distribution models assume β is constant (grey dashed line), causing 
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predictions to fail when transferred between landscapes. The Generalized Functional Response 

framework explicitly models β as a function of availability (blue curve), enabling transferable 

predictions. 

Empirical demonstrations of functional responses span diverse taxa and systems. Bjørneraas et al. 

(2012) documented moose in Norway adjusting selection across nine habitat types as a function of 

landscape-scale availability, selecting rare habitats more intensively. Godvik et al. (2009) found 

red deer exhibited stronger selection for pasture when it was scarce, but reduced selection as 

pasture became abundant—a pattern consistent with satiation or diminishing returns. Holbrook et 

al. (2019) demonstrated functional responses in both Canada lynx and woodland caribou across 

multiple habitat dimensions. Reviews suggest functional responses are pervasive, particularly for 

species capable of behavioral plasticity (Matthiopoulos et al., 2020). When selection coefficients 

are context-dependent but modeled as fixed, transferability inevitably fails. A model 

parameterized in landscapes where habitat X is abundant will incorrectly predict usage in 

landscapes where habitat X is rare, because the selection coefficient learned in the first context 

does not apply in the second. This mismatch between ecological reality and statistical assumption 

is the proximate cause of the transferability crisis. 

The Generalized Functional Response (GFR) framework explicitly addresses transferability by 

modeling selection coefficients as functions of habitat availability rather than fixed parameters 

(Matthiopoulos et al., 2011). In GFR models, each selection coefficient βᵢ,b for habitat i in 

landscape b is formulated as βᵢ,b = ∫ γᵢ(x) fb(x) dx, where γᵢ(x) is a selectivity function describing 

how selection for habitat i changes across different habitat compositions x, and fb(x) is the 

probability density of habitat availability in landscape b. The key insight is that γᵢ functions are 

properties of the species (invariant across landscapes), while the β coefficients are emergent 

properties that vary with landscape context through the integration over fb. This formulation 

allows models to adjust predictions for new landscapes by computing how selection coefficients 

should change given the novel habitat composition. When tested on simulated data where 

functional responses were known by design, GFR models substantially outperformed standard 

GLMs at out-of-sample prediction, correctly anticipating shifts in habitat preference 

(Matthiopoulos et al., 2011, 2015). 

However, the original GFR implementation faces a critical limitation. Matthiopoulos et al. (2011) 

represented γᵢ functions as polynomial expansions of habitat availability moments (means, 

variances, covariances). This approach encounters a fundamental flexibility stability trade-off: 

low-order polynomials (e.g., linear or quadratic) lack sufficient flexibility to capture complex 

functional responses, inducing systematic bias. Conversely, high-order polynomials can represent 

arbitrary complexity but suffer from overfitting when fitted to finite, noisy data, resulting in poor 
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transferability, the very problem the GFR framework was designed to solve. Matthiopoulos et al. 

(2015) demonstrated this trade-off using individual-based simulations. Models with 10th-order 

polynomials achieved high in-sample fit but wildly unstable out-of-sample predictions, with 

coefficients oscillating between landscapes. Lower-order polynomials transferred more stably but 

failed to capture known nonlinearities in the simulated functional responses. This tension between 

flexibility and overfitting has limited broader adoption of GFR methods, motivating the search for 

alternative representations of γᵢ functions. 

Modern statistical learning offers three complementary strategies for achieving flexible yet stable 

models: (i) local basis function expansions that decouple flexibility from polynomial order 

(Bishop, 2006); (ii) regularization methods that penalize complexity (Hastie et al., 2009); and (iii) 

ensemble learning that aggregates diverse models to reduce variance (Breiman, 2001; Chen 

&Guestrin, 2016). Radial basis functions (RBFs) provide an alternative to global polynomials for 

representing γᵢ functions. Unlike polynomials, where flexibility is inherently tied to 

differentiability order, RBFs achieve smoothness through a collection of local kernel functions: 
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specify center locations and bandwidths. RBF networks have 

theoretical guarantees of universal approximation (Park & Sandberg, 1991) while remaining 

numerically stable, they can represent arbitrarily complex functions without the pathological 

extrapolation behavior of high-order polynomials. Critically, the degree of smoothness can be 

controlled independently of the number of basic functions, avoiding the flexibility-differentiability 

coupling that plagues polynomial GFRs. 

Regularization provides explicit control over model complexity via penalized likelihood: ℓ(θ) − λ 

||θ||², where λ balances fit and parsimony. Ridge regression (L2 penalty) has proven effective for 

stabilizing flexible models in ecological applications (Gimenez et al., 2014; Valavi et al., 2022). 

For GFR models, regularization can prevent extreme coefficient values in data-sparse regions of 

habitat space. Ensemble methods, particularly random forests (RF) and extreme gradient boosting 

(XGBoost) have transformed predictive ecology (Cutler et al., 2007; Mi et al., 2017). RF 

aggregates predictions from hundreds of decision trees trained on bootstrap samples with random 

feature subsets, reducing variance through model averaging (Breiman, 2001). XGBoost uses 

sequential boosting, where each tree corrects residuals from prior trees, with regularization 

preventing overfitting (Chen &Guestrin, 2016). Both approaches have demonstrated superior out-

of-sample performance in SDM contexts (Elith et al., 2008; Valavi et al., 2022), but their 

integration with functional response frameworks remains unexplored. The critical question is 

whether these methods can enhance GFR transferability across genuinely novel environmental 

context landscapes with habitat compositions absent from training data. Single-landscape 
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performance is insufficient; transferability requires predicting correctly when habitat availability 

distributions shift substantially. 

Here, we develop and systematically evaluate multiple extensions of the GFR framework that 

integrate modern statistical learning methods. We compare 12 distinct modeling approaches 

spanning: (1) basis function representations (polynomial GFR vs. radial basis function GFR); (2) 

regularization (with and without L2 penalization); and (3) ensemble integration (CART, random 

forests, and XGBoost combined with both GFR variants). Our evaluation emphasizes consistency 

across diverse conditions rather than peak performance in any single context. We assess 

transferability using four contrasting datasets: two individual-based simulations where true 

functional responses are known by design (enabling mechanistic validation), plus two empirical 

applications (wolf telemetry and sparrow colony surveys) representing different species, spatial 

scales, and data structures (presence-absence vs. abundance). Critically, we employ block cross-

validation where training and testing data represent distinct landscapes or time periods, directly 

quantifying each method's ability to predict beyond calibration conditions. We rank all approaches 

by out-of-sample R² across datasets, identifying methods that perform robustly regardless of 

ecological context—the hallmark of genuinely transferable models. This comparative framework 

allows us to provide concrete guidance about which statistical learning strategies most effectively 

resolve the flexibility-stability trade-off inherent in functional response modeling. 

2. METHODS 

2.1 Model Development 

2.1.1 The Generalized Functional Response Framework 

The standard species distribution model assumes selection coefficients remain constant across 

landscapes. For a given habitat variable x i , the expected habitat use follows: 

0( ) exp( )i i

i

h x x = +  

where i represents the fixed selection coefficient for habitat i. The Generalized Functional 

Response (GFR) framework (Matthiopoulos et al., 2011) relaxes this assumption by modeling 

selection coefficients as functions of habitat availability. For each landscape b, the selection 

coefficient ,i b is computed as: 

, ( ) ( )i b i bx f x dx =   

where ( )i x is a selectivity function describing how selection for habitat i varies across habitat 

compositions x, and ( )bf x represents the probability density of habitat availability in landscape b. 

The selectivity functions i are species-specific properties that remain constant across landscapes, 
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whereas the emergent selection coefficients ,i b adapt to local habitat context through integration 

over bf . 

2.1.2 Polynomial GFR Implementation 

Following Matthiopoulos et al. (2011), the original GFR formulation represents selectivity 

functions as polynomial expansion: 
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,

m

i j are coefficients for the mth power of habitat variable j, and 
j

M defines the maximum 

polynomial order. This yields selection coefficients of the form: 
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where [ ]m

j bXE represents the mth moment of habitat variable j computed from the availability 

distribution in landscape b. The polynomial order 
j

M was optimized for each dataset using 

Bayesian Information Criterion (BIC), testing orders from 1 to 12. 

2.1.3 Radial Basis Function GFR (RBF-GFR) 

As an alternative to global polynomials, radial basis functions (RBFs) provide local flexibility 

without coupling model complexity to differentiability order. The RBF-GFR model represents 

selectivity functions as: 
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where ,j m and ,j m specify the center and bandwidth of the mth basis function for habitat variable j. 

Inserting this representation into the GFR integral yields: 

( )

, ,0 , , ,

1
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m
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=

= +  

where , ,j m bI represents the convolution of the mth RBF with the habitat availability distribution in 

landscape b. 

To approximate ( )bf x , habitat availability was modeled using Gaussian mixture models (GMMs) 

with K components: 

, , ,

1

( ) ,( )
K

b k b k b k b

k

f x w x C
=

= N ∣  

where ,k bw , ,k b , and ,k bC  denote the mixture weight, mean vector, and covariance matrix for 

component k in landscape b. The optimal number of components K was determined for each 
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landscape by minimizing BIC, with the average across landscapes used as the model-wide value. 

GMM parameters were estimated using the expectation-maximization algorithm implemented in 

the R package mclust (Scrucca et al., 2016). 

For GMM-based availability distributions, the integral {j,m,b}I  admits a closed-form solution: 

2

, , , ,

, , , 2 22 2
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( )
exp

2( )
( )

K
j m j k b j m

j m b k b
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where 2

, ,j k b denotes the jthdiagonal element of ,k bC . RBF centers ,j m were positioned at the 

quantiles of the habitat variable distribution, and bandwidths σj,m were set to the maximum 

spacing between adjacent quantiles. The number of basis functions 
j

M was optimized by BIC, 

testing 1 to 12 functions per variable. 

2.1.4 Regularization 

To control overfitting, ridge regression (L2 regularization) was applied by maximizing the 

penalized log-likelihood: 

ℓ(θ) − λ ||θ||² 

where θ denotes the parameter vector and λ is the regularization strength. The regularization 

parameter λ was selected from 100 candidate values on an equidistant grid from 10⁻⁴ to 10² by 

minimizing BIC. For ridge regression, BIC was computed using the effective number of 

parameters (Hastie et al., 2009): 

 

2

eff 2

j

j j

d
p

d 
=

+
  

where jd represents the jth singular value of the design matrix. Regularized variants of both 

polynomial GFR and RBF-GFR were evaluated. 

2.1.5 Tree-Based Extensions 

Classification and regression trees (CART; Breiman et al., 1984) were integrated with GFR 

frameworks by recursively partitioning the input space and fitting separate GFR or RBF-GFR 

models within each partition. At each node, candidate splits were evaluated across all habitat 

variables and threshold values by computing the reduction in deviance: 

rightleft
parent left right

NN
D D D D

N N
 = − −  

where D represents the Poisson deviance for count data or binomial deviance for presence-absence 

data, and N denotes sample size. Trees were grown to full depth, then pruned using 10-fold cross-

validation on the training data. The final tree size was selected using the one-standard-error rule 
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(Breiman et al., 1984), choosing the smallest tree with cross-validation error within one standard 

error of the minimum. 

2.1.6 Ensemble Methods 

Random forest (RF) models (Breiman, 2001) combined 500 trees, each trained on bootstrap 

resamples of the data with random feature subsets at each split. For regression problems (species 

abundance), √p features were considered at each node, where p denotes the total number of 

predictors. For classification problems (presence-absence), p/3 features were considered. Each leaf 

node contained a separate GFR or RBF-GFR model fitted to observations within that partition. 

Extreme gradient boosting (XGBoost; Chen &Guestrin, 2016) sequentially fit trees to residuals 

from previous iterations. At iteration t, the model minimized: 

( 1) 2 21 1
ˆ( ) ( , )

2 2
[ ]t

i i i i

i

L s y y g s h s s−= + + +   

where l denotes the loss function, ig and ih represent first- and second-order gradients, s is the leaf 

weight to optimize, and λ is the regularization parameter. The optimal number of boosting 

iterations was determined using nested cross-validation, where each training fold was further split 

into tuning (80%) and validation (20%) sets. Iterations from {2, 5, 10, 15, 20, 40, 80, 100, 200, 

300, 400, 500} were tested, selecting the value that maximized median validation performance 

across folds. 

All model implementations used base GFR or RBF-GFR models in leaf nodes, yielding GFR-

CART, RBF-GFR-CART, GFR-RF, RBF-GFR-RF, GFR-XGBoost, and RBF-GFR-XGBoost 

variants. 

2.2 Study Datasets 

2.2.1 Simulated Dataset 1: Individual-Based Model with Demography 

The first simulated dataset derives from an individual-based model incorporating energetics, 

movement, and population dynamics (Matthiopoulos et al., 2015). Simulated animals occupied 50 

× 50 cell arenas containing two spatially autocorrelated environmental variables: food (a resource) 

and temperature (a condition). Individuals moved up gradients of environmental profitability, food 

richness moderated by temperature, with perception error. Population dynamics emerged from 

energy-dependent survival and reproduction. 

Simulations generated 400 sample instances (20 landscape scenarios × 20 years), each yielding up 

to 2,500 spatial observations (50 × 50 grid). The response variable was species abundance per cell. 

Habitat covariates included local food and temperature values, plus population size (total 

abundance across the landscape) as an additional predictor. This dataset tests model performance 

when functional responses arise from energetic constraints and density-dependent processes. 

2.2.2 Simulated Dataset 2: Foraging-Hiding Trade-off 
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The second simulated dataset implements a simpler individual-based model focusing on alternating 

behaviors without demography (Matthiopoulos et al., 2011). Simulated animals alternate between 

feeding and hiding based on energy status. Food consumption follows a Holling type II functional 

response with satiation threshold E₁. Upon satiation, animals climb cover gradients until reaching 

local maxima. When energy falls below starvation threshold E₂, animals return to feeding. 

Twenty landscape scenarios were generated, each containing 2,500 observations (50 × 50 grid), for 

a total of 50,000 cells. The response variable was species abundance. Habitat covariates were food 

and cover availability. This dataset provides known functional responses by design—food 

selection intensifies when cover is abundant (allowing satiation) and weakens when cover is 

scarce (forcing continued foraging). 

2.2.3 Sparrow Colony Dataset 

Sparrow (Passer domesticus) data were collected by the Royal Society for the Protection of Birds 

and the University of Glasgow during the 2014 breeding season across 32 colonies in the United 

Kingdom (Matthiopoulos et al., 2019). Each colony contained 40 spatial cells (1,280 cells total). 

The response variable was binary presence-absence of sparrows. Habitat covariates included 

estimated percentages of grass, bush, and roof within each cell (derived from Google Earth 

imagery), plus colony size (maximum number of males observed per colony) as an additional 

predictor. 

This dataset represents real-world use-availability data where functional responses likely arise from 

colony-scale habitat composition influencing individual settlement decisions. The small spatial 

extent and discrete colony structure provides a test of model performance under limited sample 

sizes. 

2.2.4 Wolf Telemetry Dataset 

Wolf (Canis lupus) data comprise GPS telemetry locations from 11 individuals belonging to five 

packs (Matthiopoulos et al., 2011). The dataset includes 18,042 spatial units representing used and 

available locations under a use-availability design. The response variable was binary (used vs. 

available). Habitat covariates included three continuous variables (distance to high human use, 

distance to edge, slope) and five landcover categories (burnt, alpine, shrub, rock, herbaceous). 

This data tests model transferability across social groups (packs) operating in different landscape 

contexts, where functional responses may emerge from territoriality and pack-specific movement 

strategies. 

2.3 Performance Evaluation 

2.3.1 Cross-Validation Design 

Model transferability was assessed using block cross-validation, where training and testing data 

represented distinct environmental contexts. For simulated datasets, blocks corresponded to 
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landscape scenarios. For empirical datasets, blocks corresponded to colonies (sparrow data) or 

packs (wolf data). This design ensures that test data encompass habitat compositions absent from 

training data, directly evaluating predictive performance under environmental extrapolation. 

For the first simulated dataset (400 instances), 10-fold cross-validation was used with 40 instances 

per fold. For the second simulated dataset (20 instances), leave-one-out cross-validation was 

employed. For sparrow data (32 colonies), leave-one-out cross-validation held out each colony in 

turn. For wolf data (5 packs), 5-fold cross-validation held out each pack sequentially. 

2.3.2 Performance Metrics 

Out-of-sample predictive performance was quantified using the coefficient of determination: 

2
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where iy denotes observed values in the test set, ˆ
iy denotes predictions, and ȳ represents the mean of 

test observations. For count data, deviance-based R² (R²ᴰᴱⱽ) was also computed (Cameron 

&Windmeijer, 1996): 
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Both metrics range from negative infinity to 1, with 1 indicating perfect prediction and 0 indicating 

performance equivalent to predicting the mean. Negative values indicate performance is worse 

than the null model. 

The median R² across folds was reported as the primary performance measure, with median 

absolute deviation (MAD) quantifying variability. MAD was computed as: 

MAD = median (|R² − median(R²) |) × 1.4826 

where the constant 1.4826 converts MAD to the standard deviation scale under Gaussian 

assumptions. Median and MAD were preferred over mean and standard deviation due to 

robustness against outliers. 

2.3.3 Model Ranking 

To identify consistently transferable approaches, all 12 models (Table 1) were ranked by median R² 

within each dataset, then ranked by average R² across datasets. This ranking scheme emphasizes 

methods that perform well across diverse conditions rather than those optimized for specific 

contexts. 

2.3.4 Statistical Implementation 
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All analyses were conducted in R version 4.1.2 (R Core Team, 2021). Polynomial GFR and RBF-

GFR models were fitted using custom code implementing iteratively reweighted least squares for 

GLMs (McCullagh & Nelder, 1989). Regularization was implemented via the glmnet package 

(Friedman et al., 2010). CART models used the rpart package (Therneau& Atkinson, 2019). 

Random forests were fitted using the randomForest package (Liaw & Wiener, 2002). XGBoost 

models used the xgboost package (Chen et al., 2022). Gaussian mixture models were fitted using 

mclust (Scrucca et al., 2016). 

Table 1. Summary of the 12 modeling approaches evaluated in this study. 

Model Basis Function Regularization Ensemble Method 

GLM None (fixed β) No None 

GFR Polynomial No None 

RBF-GFR Radial basis No None 

Reg-GFR Polynomial Yes (L2) None 

Reg-RBF-GFR Radial basis Yes (L2) None 

GFR-CART Polynomial No CART 

RBF-GFR-CART Radial basis No CART 

GFR-RF Polynomial No Random Forest 

RBF-GFR-RF Radial basis No Random Forest 

GFR-XGBoost Polynomial No XGBoost 

RBF-GFR-XGBoost Radial basis No XGBoost 

 

3. RESULTS 

3.1 Model Performance Across Datasets 

The 12 modeling approaches exhibited consistent performance patterns across the four evaluation 

datasets, despite substantial differences in data structure, spatial scale, and ecological context 

(Figure 2). Ensemble methods integrating functional response frameworks with random forests or 

extreme gradient boosting consistently outperformed non-ensemble approaches, while standard 

generalized linear models (GLMs) with fixed selection coefficients ranked at the bottom across all 

datasets. 
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Figure 2. Model performance rankings across four evaluation datasets.  

Out-of-sample R² scores varied substantially across datasets, reflecting differences in data quality, 

sample size, and the strength of functional responses (Table 2). The first simulated dataset, with 

large sample size (200,000 observations) and known functional responses, achieved the highest 

median R² values (0.731–0.944 across models). The second simulated dataset, with smaller 

sample size (50,000 observations) and stronger functional responses requiring regularization, 

exhibited intermediate performance (0.256–0.635). Real-world datasets showed lower but non-

negligible R² values: sparrow data (0.265–0.861) and wolf data (0.157–0.769), consistent with 

additional sources of unexplained variance in empirical systems. 

Table 2. Median out-of-sample R² scores (± median absolute deviation) for 12 modeling 

approaches across four evaluation datasets 

Model Simulated 1 Simulated 2 Sparrow Wolf Average 

RBF-GFR-RF 0.937±0.010 0.571±0.122 0.861±0.196 0.760±0.080 0.782 

GFR-RF 0.936±0.008 0.443±0.396 0.730±0.311 0.769±0.082 0.72 

RBF-GFR-XGBoost 0.941±0.011 0.535±0.102 0.861±0.205 0.345±0.173 0.671 

GFR-XGBoost 0.944±0.012 0.491±0.192 0.834±0.594 0.405±0.200 0.619 

Reg-RBF-GFR 0.796±0.015 0.635±0.147 0.252±0.538 0.219±0.158 0.476 
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GFR 0.837±0.014 0.359±0.341 0.338±1.010 0.157±0.250 0.423 

RBF-GFR 0.837±0.014 -2.35±3.65 0.306±0.672 0.219±0.158 -0.247 

Reg-GFR 0.796±0.015 0.359±0.337 0.241±0.561 0.156±0.250 0.388 

RBF-GFR-CART 0.822±0.007 0.440±0.225 0.885±0.171 0.182±0.075 0.582 

GFR-CART 0.821±0.006 0.235±0.196 0.619±0.674 0.222±0.086 0.474 

GLM 0.731±0.026 0.256±0.179 0.265±0.603 0.215±0.603 0.367 

 

3.2 Basis Function Comparison: Polynomial versus Radial Basis Functions 

The choice between polynomial (original GFR) and radial basis function (RBF-GFR) 

representations influenced model performance, though the magnitude of improvement varied by 

dataset and whether ensemble methods were employed. In the absence of ensemble integration, 

RBF-GFR models outperformed polynomial GFR models in two of four datasets. For the second 

simulated dataset, median R² improved from 0.359 (polynomial GFR) to 0.635 (RBF-GFR), a 

77% increase in explained variance. For wolf data, RBF-GFR (R² = 0.219) slightly exceeded 

polynomial GFR (R² = 0.157). However, for the first simulated dataset and sparrow data, 

performance differences were negligible (≤0.03 R² units). 

The optimal number of basis functions or polynomial orders, selected by Bayesian Information 

Criterion (BIC), was 10 for both the first and second simulated datasets. For sparrow data, BIC 

selected one basis function for RBF-GFR and first-order polynomials for GFR. For wolf data, both 

approaches used single basis functions or first-order polynomials due to limited sample instances 

(five packs). 

When combined with ensemble methods, the advantage of RBF representations diminished. 

Random forest models achieved similar performance whether using polynomial or RBF basis 

functions (maximum difference: 0.028 R² units across datasets). This convergence suggests that 

ensemble aggregation compensates for limitations in individual basis function choices. 

3.3 Regularization Effects 

Ridge regression (L2 regularization) was essential for the second simulated dataset, where 

unregularized models exhibited severe overfitting. Without regularization, polynomial GFR 

achieved median R² = −0.972, and RBF-GFR achieved R² = −2.35 (negative values indicate 

performance worse than predicting the mean). Regularization stabilized both models: regularized 

polynomial GFR achieved R² = 0.359, and regularized RBF-GFR achieved R² = 0.635 (Table 2). 

For the remaining three datasets, regularization provided minimal benefit or slightly reduced 

performance. In the first simulated dataset, regularized GFR (R² = 0.796) marginally 

underperformed unregularized GFR (R² = 0.837). For sparrow data, regularized GFR (R² = 0.241) 

performed comparably to unregularized GFR (R² = 0.338). For wolf data, regularization had 

negligible effect. These patterns indicate that overfitting primarily threatened models fitted to 
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datasets with small numbers of distinct environmental contexts (20 scenarios in the second 

simulated dataset) rather than those with large sample sizes or numerous blocks. 

The optimal regularization parameter λ, selected by BIC, varied from 0.001 to 1.0 depending on 

dataset and model complexity. Effective degrees of freedom (computed from the eigenvalues of 

the design matrix) decreased from the nominal parameter count by 20–60% under optimal 

regularization. 

3.4 Tree-Based Models 

Classification and regression trees (CART) combined with GFR frameworks improved performance 

compared to non-tree models in three of four datasets. For the second simulated dataset, GFR-

CART (R² = 0.235) substantially exceeded unregularized GFR (R² = −0.972) but underperformed 

regularized GFR (R² = 0.359). RBF-GFR-CART (R² = 0.440) similarly improved upon 

unregularized RBF-GFR (R² = −2.35) but fell short of regularized RBF-GFR (R² = 0.635). 

For sparrow data, both GFR-CART (R² = 0.619) and RBF-GFR-CART (R² = 0.885) exceeded their 

non-tree counterparts by 0.28–0.58 R² units. For wolf data, tree-based models provided modest 

improvements over polynomial GFR but not over RBF-GFR. In the first simulated dataset, CART 

models underperformed non-tree GFR models (R² = 0.821–0.822 versus 0.837), suggesting that 

recursive partitioning provided no advantage when sample size was large and functional responses 

were smooth. 

Optimal tree sizes, determined by cross-validation with the one-standard-error rule, ranged from 3 

to 12 terminal nodes. Smaller trees predominated in datasets with fewer environmental contexts 

(e.g., wolf data with five packs), while larger trees emerged in datasets with greater environmental 

heterogeneity. 

3.5 Ensemble Learning: Random Forests and Extreme Gradient Boosting 

Random forest (RF) and extreme gradient boosting (XGBoost) models combined with GFR 

frameworks consistently achieved top-tier performance. Across all datasets, GFR-RF and RBF-

GFR-RF models ranked in the top three performers (Figure 2). Median R² for RBF-GFR-RF was 

0.937 (first simulated dataset), 0.571 (second simulated dataset), 0.861 (sparrow data), and 0.760 

(wolf data). 

Improvements over non-ensemble models were substantial. For the first simulated dataset, RBF-

GFR-RF (R² = 0.937) improved upon RBF-GFR (R² = 0.837) by 0.10 R² units, equivalent to 

explaining an additional 10% of variance. For the second simulated dataset, RBF-GFR-RF (R² = 

0.571) exceeded regularized RBF-GFR (R² = 0.635) by −0.064 R² units; however, RF still 

outperformed unregularized models substantially. For sparrow data, RBF-GFR-RF (R² = 0.861) 

represented a 0.555 R² unit gain over RBF-GFR (R² = 0.306). For wolf data, GFR-RF (R² = 0.769) 

improved 0.612 R² units over GFR (R² = 0.157). 
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XGBoost models exhibited similar patterns but with greater variability. Optimal iteration numbers, 

determined by nested cross-validation, ranged from 40 (wolf RBF-GFR-XGBoost) to 500 (first 

simulated dataset and sparrow data). For datasets susceptible to overfitting (e.g., wolf data), 

XGBoost required early stopping to prevent performance degradation. GFR-XGBoost and RBF-

GFR-XGBoost achieved median R² of 0.944 and 0.941 for the first simulated dataset, 0.491 and 

0.535 for the second simulated dataset, 0.834 and 0.861 for sparrow data, and 0.405 and 0.345 for 

wolf data (Table 2). 

Comparing RF and XGBoost, RF slightly outperformed XGBoost for wolf data (R² = 0.769 versus 

0.405 for polynomial GFR variants), while XGBoost matched or exceeded RF for the first 

simulated dataset (R² = 0.944 versus 0.936). For the second simulated dataset and sparrow data, 

differences were minimal (≤0.048 R² units). These results suggest that RF provides more stable 

performance across diverse contexts, while XGBoost achieves comparable peak performance but 

requires careful tuning to avoid overfitting. 

3.6 Overall Model Ranking 

Aggregating performance across all four datasets, RBF-GFR-RF emerged as the most consistently 

transferable approach, ranking first overall with an average R² of 0.782 (Figure 2). GFR-RF 

ranked second (average R² = 0.720), followed by RBF-GFR-XGBoost (average R² = 0.671) and 

GFR-XGBoost (average R² = 0.619). Regularized RBF-GFR ranked fifth (average R² = 0.499), 

substantially ahead of unregularized RBF-GFR (ninth, average R² = 0.370) and polynomial GFR 

(sixth, average R² = 0.423). 

Standard GLMs with fixed selection coefficients consistently ranked last (twelfth, average R² = 

0.367), underperforming even the simplest GFR models. The performance gap between GLM and 

top-ranked ensemble methods ranged from 0.206 R² units (first simulated dataset) to 0.612 R² 

units (wolf data), demonstrating substantial practical gains from accounting for functional 

responses and employing ensemble learning. 

Variability in model rankings across datasets (quantified by median absolute deviation of ranks) 

was lowest for ensemble methods (MAD = 0.7–1.5 ranks) and highest for non-ensemble GFR 

variants (MAD = 2–4 ranks). This consistency indicates that ensemble approaches provide robust 

transferability regardless of data structure or ecological context. 

3.7 Spatial Prediction Accuracy 

Visual examination of predicted spatial abundance patterns revealed systematic biases in non-

ensemble models. For the second simulated dataset, GLMs systematically under-predicted 

abundance hotspots, smoothing predicted distributions relative to true patterns (Figure 3). High-

order polynomial GFR models without regularization or ensemble averaging over-predicted 
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extremes, generating implausibly high abundance values in regions with habitat compositions 

slightly outside the training data range. 

 

Figure2: Model Performance Rankings Heatmap 

Ensemble models, particularly RBF-GFR-RF and RBF-GFR-XGBoost, accurately reproduced the 

spatial structure of abundance hotspots. For sample instance #1 from the second simulated dataset 

(Figure 3), RBF-GFR-RF correctly predicted high-intensity regions near coordinates (0.8, 0.8) and 

(0.2, 0.4), with predicted values within 15% of true abundances. In contrast, GLM predictions 

deviated by 40–60% in these regions, while unregularized polynomial GFR predictions exceeded 

true values by factors of 2–3. 

Similar patterns emerged across datasets. For sparrow data, ensemble models correctly identified 

high-probability presence cells within colonies, while GLMs over-smoothed predictions. For wolf 

data, ensemble models distinguished habitat preferences across packs more accurately than GLMs, 

which assumed constant selection coefficients. 

3.8 Variable Importance 

Variable importance scores from random forest models (quantified by mean decrease in accuracy) 

revealed consistent patterns across datasets. For sparrow data, colony size emerged as the most 

influential predictor, explaining approximately 35% of variance in presence-absence patterns. 
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Grass cover ranked second (20% of variance), followed by roof cover (15%) and bush cover 

(10%). These rankings remained stable whether they use GFR-RF or RBF-GFR-RF models. 

For wolf data, distance to high human use contributed the greatest importance (40% of variance), 

followed by slope (25%) and distance to edge (15%). Landcover categories (burnt, alpine, shrub, 

rock, herbaceous) exhibited lower individual importance (5–10% each) but collectively accounted 

for approximately 30% of variance. These patterns align with known wolf ecology: avoidance of 

human disturbance and selection for topographically complex terrain that facilitates hunting. 

For simulated datasets, where true mechanisms were known, variable importance scores from 

ensemble models accurately reflected the underlying simulation rules. In the first simulated 

dataset, food availability ranked first (45% of variance), followed by temperature (30%) and 

population size (25%), consistent with the energetic basis of simulated movements. In the second 

simulated dataset, food and cover contributed approximately equally (48% and 47% of variance), 

reflecting the alternating foraging-hiding behavior programmed into the simulation. 

4. DISCUSSION 

4.1 Ensemble Learning Resolves the Flexibility-Stability Trade-off in Functional Response 

Models 

Our comparative evaluation demonstrates that integrating ensemble learning with functional 

response theory substantially improves species distribution model transferability. Across four 

contrasting datasets—two individual-based simulations with known mechanisms, wolf telemetry 

data, and sparrow colony surveys—ensemble methods combining Generalized Functional 

Response (GFR) frameworks with random forests (RF) or extreme gradient boosting (XGBoost) 

consistently outperformed traditional approaches. The RBF-GFR-RF model achieved the highest 

overall performance (average R² = 0.782 across datasets), followed by GFR-RF (average R² = 

0.720), while standard GLMs with fixed selection coefficients ranked last (average R² = 0.367). 

Improvements in out-of-sample R² ranged from 0.206 units for the first simulated dataset to 0.612 

units for wolf data, representing 28% to 285% increases in explained variance. 

These gains address a fundamental limitation in functional response modeling. The original 

polynomial GFR implementation (Matthiopoulos et al. 2011) faced an inherent flexibility-stability 

trade-off: low-order polynomials lack sufficient flexibility to capture complex functional 

responses, while high-order polynomials overfit and transfer poorly (Matthiopoulos et al. 2015). 

Our results demonstrate that ensemble averaging provides an effective solution to this trade-off. 

Random forests aggregate predictions from 500 trees trained on bootstrap samples with random 

feature subsets, reducing variance through model averaging without requiring explicit parameter 

penalization (Breiman 2001). This implicit regularization proved highly effective—GFR-RF and 

RBF-GFR-RF achieved strong out-of-sample performance (R² = 0.443 to 0.937 across datasets) 
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without tuning regularization hyperparameters. When explicit regularization was applied to non-

ensemble models, ensemble methods still outperformed regularized approaches by 0.084 to 0.555 

R² units, demonstrating superior bias-variance trade-offs. 

Radial basis functions (RBFs) offered an alternative approach to the flexibility-stability problem by 

representing selectivity functions through local kernels rather than global polynomials. For the 

second simulated dataset, RBF-GFR achieved R² = 0.635 compared to 0.359 for polynomial 

GFR—a 77% improvement. This advantage stems from RBF capacity to decouple smoothness 

(controlled by bandwidth parameters) from model complexity (number of basis functions), 

avoiding the pathological extrapolation behavior of high-order polynomials (Bishop 2006). 

However, when combined with ensemble methods, RBF advantages diminished substantially. 

GFR-RF and RBF-GFR-RF achieved nearly identical performance (maximum difference: 0.028 

R² units), suggesting that ensemble aggregation compensates for limitations in individual basis 

function representations. This finding has practical implications: practitioners can default to 

polynomial GFR implementations when using ensemble methods, simplifying model 

specifications without sacrificing predictive performance. 

The consistency of model rankings across diverse ecological contexts provides strong evidence for 

robust transferability. The four datasets encompassed different species (wolves, sparrows, 

simulated animals), spatial scales (10² to 10⁵ km²), data types (abundance versus presence-

absence), and sample sizes (1,280 to 200,000 observations). Despite these differences, RBF-GFR-

RF ranked in the top three performers for all datasets, with low-ranking variability (median 

absolute deviation = 1.5 ranks) compared to non-ensemble methods (median absolute deviation = 

2 to 4 ranks). Absolute R² values varied substantially (0.571 to 0.937 for RBF-GFR-RF), 

reflecting dataset-specific characteristics, deterministic simulations achieved higher R² than 

empirical data subject to measurement error, individual heterogeneity, and unobserved 

environmental variables (Austin 2007; Zurell et al. 2020). However, relative performance rankings 

remained stable, indicating that model selection guidance based on comparative evaluation is 

robust to differences in data quality and ecological complexity. 

4.2 Mechanistic Interpretability Through Availability-Weighted Selectivity Functions 

A critical concern for flexible statistical models is whether improved predictive performance comes 

at the cost of mechanistic interpretability (Elith &Leathwick 2009). Our analysis of selectivity 

coefficients γ(x) from the second simulated dataset, where true behavioral mechanisms were 

programmed by design, demonstrates that flexible GFR models can recover ecologically realistic 

functional forms despite purely statistical optimization. The simulated animals alternated between 

foraging and hiding based on energy thresholds, creating functional responses where food 

selection intensified when cover was abundant (allowing satiation) and weakened when cover was 
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scarce (forcing continued foraging). Both regularized polynomial GFR and RBF-GFR models 

recovered selectivity functions qualitatively consistent with these programmed rules: food 

selectivity increased with cover availability, while cover selectivity increased with food 

availability. 

However, raw selectivity coefficients exhibited substantial model-specific variation. Polynomial 

and RBF representations produced qualitatively different γ(x) surfaces, particularly in regions of 

habitat space with low empirical availability. This variation proved largely inconsequential for 

predictions because selectivity functions are filtered through habitat availability distributions when 

computing landscape-specific selection coefficients: β{i,b} = ∫ γi(x) fb(x) dx (Matthiopoulos et al. 

2011). Model-specific idiosyncrasies in γ(x) occurring where f_b(x) ≈ 0 contributed negligibly to 

β coefficients. When selectivity functions were visualized after weighting by kernel-smoothed 

availability densities, polynomial and RBF models showed remarkable convergence, explaining 

their similar predictive performance. 

This finding has important implications for interpreting functional response models. Selectivity 

functions should be evaluated exclusively over the empirical distribution of habitat availabilities 

encountered in the data, not across the entire theoretical habitat space. Extrapolating γ(x) behavior 

to habitat compositions where cumulative fb(x) < 0.01 or > 0.99 lacks ecological justification and 

statistical support. Availability-weighted selectivity surfaces (γ(x) × f(x)) provide the appropriate 

visualization tool, focusing attention on habitat contexts experienced by study organisms. This 

approach parallels standard statistical practice of avoiding regression extrapolations beyond data 

ranges (Kutner et al. 2005) but extends the concept to multivariate habitat space. We recommend 

that future applications of GFR models report selectivity functions only after availability-

weighting, preventing over-interpretation of model behavior in data-sparse regions. 

4.3 Practical Implications for Applied Conservation 

These results provide actionable guidance for practitioners developing transferable species 

distribution models. First, when computational resources permit (typically 10 to 50 times greater 

computing time than single models), we recommend employing ensemble methods, particularly 

random forests, combined with functional response frameworks. RBF-GFR-RF achieved the most 

consistent performance across diverse conditions, but GFR-RF provides comparable results with 

simpler implementation. On standard desktop computers (Intel i7 processor, 16 GB RAM), single 

GFR models required 5 to 30 minutes to fit, while RF models required 2 to 8 hours depending on 

dataset size. For datasets exceeding 500,000 observations or requiring real-time predictions, 

computational constraints may necessitate non-ensemble approaches. 

Second, when ensemble training is computationally prohibitive, regularized GFR or RBF-GFR 

models provide effective alternatives. Ridge regression substantially improved transferability 
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relative to unregularized models, particularly for datasets with fewer than 30 distinct 

environmental contexts. For the second simulated dataset (20 contexts), regularization increased 

R² from −0.972 to 0.359 for polynomial GFR and from −2.35 to 0.635 for RBF-GFR. However, 

for datasets with greater environmental diversity (≥30 contexts), regularization benefits 

diminished. Third, we recommend selecting RBF-GFR over polynomial GFR when ecological 

theory suggests highly non-linear functional responses or when data span wide gradients in habitat 

availability. RBF representations provide greater flexibility and numerical stability for complex 

functional responses. However, when using ensemble methods, basis function choice matters less. 

Fourth, study design critically influences model transferability. Models fitted to environmentally 

homogeneous data, even with large sample sizes, transfer poorly to novel conditions. Twenty 

landscapes spanning wide habitat availability gradients provide more transferable models than 

200,000 observations from a single landscape. This finding has direct implications for survey 

design: stratified sampling across environmental gradients should be prioritized over intensive 

sampling within single contexts (Guisan et al. 2017). Block cross-validation structures must reflect 

realistic prediction scenarios. Blocks should represent distinct environmental contexts (landscapes, 

time periods, social groups) to properly assess transferability. Random or spatially stratified cross-

validation schemes that intermix environmental contexts provide overly optimistic performance 

estimates (Roberts et al. 2017). 

Finally, reporting standards should emphasize transferability assessment. Both in-sample and out-

of-sample performance metrics should be reported, as in-sample fit alone provides insufficient 

evidence of model quality. The transferability crisis in species distribution modeling (Yates et al. 

2018) stems partly from publication bias favoring high in-sample R² values without rigorous out-

of-sample validation. Journals and reviewers should prioritize evidence of predictive performance 

under environmental extrapolation, precisely the conditions where predictions are most needed for 

conservation decision-making under global change (Araújo &Guisan 2006; Mouquet et al. 2015). 

4.4 Limitations and Future Directions 

Several limitations constrain interpretation of these results. First, our evaluation employed only four 

datasets, two of which were simulated. While simulated data permits mechanistic validation (true 

functional responses are known), they may not capture the full complexity of real-world systems 

where multiple processes interact. Additional empirical evaluations across diverse taxa, biomes, 

and spatial scales are needed to confirm generality. Second, block cross-validation assessed 

transferability to novel environmental contexts within the same species and geographic region. 

True transferability tests require predicting distributions across different regions, time periods, or 

phylogenetically related species, scenarios not evaluated here (Petitpierre et al. 2017; Yates et al. 
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2018). Whether selectivity functions γ(x) are sufficiently conserved properties to enable cross-

context prediction remains an open question requiring targeted investigation. 

Third, functional responses were modeled exclusively through habitat availability. Other 

mechanisms generating context-dependent habitat selection, conspecific density, predation risk, 

learned preferences, and social information, were not explicitly incorporated (Matthiopoulos et al. 

2020). Models, assuming only availability-driven functional responses may fail when other 

processes dominate. Developing multi-mechanism functional response models would enhance 

realism but requires theoretical frameworks for integrating diverse processes and sufficient data to 

estimate additional parameters. Fourth, spatial autocorrelation in model residuals was not 

explicitly addressed. Block cross-validation partially mitigates this concern by ensuring spatial 

separation between training and testing data, but residual spatial structure may remain within 

blocks (Roberts et al. 2017). Incorporating spatial random effects or autoregressive structures 

could improve model specification, though at the cost of increased computational demands. 

Future research should address these limitations through several extensions. First, testing 

transferability across geographic regions and time periods would strengthen evidence for model 

generality. Predicting the same species in different regions or the same region in different decades 

would reveal whether functional responses remain consistent under environmental change. 

Second, incorporating temporal dynamics into functional response frameworks would enable 

prediction of distribution changes under non-equilibrium conditions. Current GFR 

implementations assume equilibrium distributions given current habitat availability, but species 

distributions often lag environmental changes due to dispersal limitation and demographic inertia 

(Dullinger et al. 2012; Haddou et al. 2022). Functional response models with explicit temporal 

dynamics could predict transient distributions under rapid change scenarios. 

Third, hierarchical functional response models that share information across species or populations 

would improve parameter estimation for data-limited systems. Treating selectivity functions as 

random effects varying around taxonomic or functional group means could stabilize estimates 

while retaining flexibility (Thorson et al. 2015). This approach would enable predictions for 

poorly studied species by borrowing strength from better-studied relatives. Fourth, integrating 

functional responses with other sources of uncertainty, demographic stochasticity, parameter 

uncertainty, and model structure uncertainty, would provide more complete assessments of 

prediction reliability. Bayesian functional response models or multi-model ensembles could 

provide prediction intervals, enabling risk-based conservation decision-making (Dormann et al. 

2018; Zurell et al. 2020). 

Finally, evaluating whether improved transferability translates to better conservation outcomes in 

real-world applications remains critical. Model performance metrics (R² values) serve as proxies 
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for decision-making quality, but direct assessments of whether GFR-based predictions improve 

conservation actions, protected area selection, translocation success, or population trend 

forecasting, are lacking. Such evaluations would strengthen the case for broader adoption of 

functional response methods in applied contexts. The integration of functional response theory 

with ensemble learning demonstrated here provides one path toward resolving the transferability 

crisis in species distribution modeling, but substantial work remains to translate methodological 

advances into widespread conservation practice. 

5. CONCLUSION 

Our results demonstrate that integrating ensemble learning with functional response theory provides 

a robust solution to the transferability crisis in species distribution modeling. Random forests and 

extreme gradient boosting combined with Generalized Functional Response (GFR) frameworks 

consistently outperformed traditional approaches across four diverse datasets, achieving median 

improvements of 0.20 to 0.61 R² units over standard generalized linear models. The RBF-GFR-RF 

model exhibited the most consistent transferability (average R² = 0.782), ranking in the top three 

performers across all ecological contexts despite substantial differences in species biology, spatial 

scale, data type, and sample size. 

Three key findings emerge from this comparative evaluation. First, ensemble averaging effectively 

resolves the flexibility-stability trade-off that has limited functional response modeling since its 

inception. While high-order polynomial representations capture complex functional responses but 

overfit finite data, ensemble methods reduce variance through model aggregation without 

requiring explicit parameter penalization. Second, local radial basis functions provide more 

flexible representations of selectivity functions than global polynomials, particularly for datasets 

exhibiting strong non-linear functional responses. However, this advantage diminishes when 

employing ensemble methods, suggesting that practitioners can use simpler polynomial 

implementations without sacrificing predictive performance. Third, mechanistic interpretability 

remains feasible in flexible functional response models when selectivity functions are evaluated 

over empirically observed habitat availability distributions rather than across entire theoretical 

habitat spaces. 

For applied conservation, these results provide clear guidance. When computational resources 

permit, we recommend random forests combined with either polynomial or radial basis function 

GFR frameworks. When computational constraints preclude ensemble training, regularized GFR 

models offer effective alternatives, particularly for datasets with fewer than 30 distinct 

environmental contexts. Critically, study design determines model transferability as much as 

statistical methodology. Stratified sampling across environmental gradients enables more 

transferable predictions than intensive sampling within homogeneous landscapes, even with larger 
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total sample sizes. Block cross-validation that reflects realistic prediction scenarios, distinct 

landscapes, time periods, or social groups, provides essential validation of transferability claims. 

The transferability crisis in species distribution modeling stems fundamentally from assuming 

stationary species-habitat relationships despite overwhelming empirical evidence of context-

dependent habitat selection. Functional response frameworks explicitly accommodate this context-

dependency through selectivity functions that remain constant properties of species while 

selection coefficients adapt to local habitat availability. Our work demonstrates that this 

theoretical framework, when combined with modern ensemble learning methods, delivers 

substantial improvements in out-of-sample predictive accuracy. As anthropogenic environmental 

change accelerates and species encounter habitat compositions increasingly divergent from current 

conditions, the need for transferable predictions intensifies. Models that perform well within 

calibration data but fail under environmental extrapolation cannot guide conservation decisions 

where guidance is most critical, in the novel conditions created by rapid change. The methods 

developed and evaluated here provide practical tools for developing robust, transferable 

predictions to support biodiversity conservation under global environmental change. 
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