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Abstract—Image investigation systems maintain fundamental
importance in digital information security. The correct and se-
cure management of digital content depends on image forgery
detection techniques. This research presents an effective method
with explained functionality to detect forged images by using
Local Binary Patterns (LBP) and Discrete Cosine Transform
(DCT) features extracted from chrominance components. Local
Binary Patterns (LBP) provide image forgery detection capability.
The selected features for image forgery detection include LBP
together with DCT obtained from image chrominance components.
The proposed method segments the C-band Cr channels into
blocks and applies LBP followed by DCT to capture textual and
frequency-based artifacts indicative of tampering. These features
are then classified using a Linear Support Vector Machine (SVM),
achieving an accuracy of 92 percent in five-fold cross-validation
on the combined CASIA 1.0 and CASIA 2.0 datasets. To enhance
model transparency, we integrate the Local Interpretable Model-
agnostic Explanations (LIME) framework, providing insight into
the classifier’s decision-making process. This study proves the utility
of the proposed method through measurement results, advancing
the interpretability of the proposed approach and the reliability of
image forensic systems.

Index Terms—Image Forgery Detection, Local Binary Patterns
(LBP), Discrete Cosine Transform (DCT), Chrominance Features,
Linear Support Vector Machine (SVM), Explainable AI (XAI),
Local Interpretable Model-agnostic Explanations (LIME), Image
Forensics, CASIA Dataset, Image Classification.

I. INTRODUCTION

Digital image forensics requires effective image forgery
detection within current times when manipulations of images
affect journalism and judicial proceedings as well as public
belief systems. Advanced image editing software has turned
it into a troublesome task to separate authentic images from
tampered ones. The present traditional tampering artefact
identification tools in image forensics lack interpretability

capabilities that become crucial when dealing with high-stakes
applications.

Research in Explainable Artificial Intelligence (XAI) has
produced powerful technologies that help increase the trans-
parency of artificial intelligence models. A research design
presents an explainable image forgery detection framework
which integrates handcrafted feature extraction with a trans-
parent classification system.

The system first uses Local Binary Pattern (LBP) for
chrominance texture feature extraction from image blocks
before Discrete Cosine Transform (DCT) analyzes frequency
characteristics. The calculation of transformed feature standard
deviation shows how blocks differ from one another. The
system obtains separate features from Cr and Cb channels
of the YCbCr color space which it combines into a unified
feature vector.

The Linear Support Vector Machine (SVM) utilizes the
feature vectors obtained to create a training system. The
chosen SVM design demonstrates successful implementation
for simplicity reasons. We added Local Interpretable Model-
agnostic Explanations (LIME) to the model to generate visual
explanations of important features that affect each prediction.

Combining LBP features with DCT features and standard
deviation-based features alongside Linear SVM explainability
using LIME builds an effective detection system where users
can understand model decisions. The proposed system demon-
strates cross-validation accuracy of 92% which validates its
potential practical use for image forensics purposes.

II. LITERATURE SURVEY

Modern multimedia technologies and conveniently accessi-
ble image editing software individuals now face greater risks
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for image forgery. Splicing techniques applied to open com-
munication networks allow unauthorized users to edit images
by merging different image sections. Such methods create
significant consequences for public confidence in addition
to exposing problems in court systems. DWT and DRLBP
together form an effective detection method through combined
use of Discrete Wavelet Transform and Discriminative Robust
Local Binary Patterns histogram calculation.Testing occurred
using benchmark datasets that demonstrated an accuracy rate
of 98.95% while showing better detection performance com-
pared to modern digitized forgery detection systems. The
model demonstrates superior abilities to uncover slight image
manipulations occurring in spliced areas.[1]

Research has focused on different forgery techniques such
as copy-move, splicing, and imitation, typically employing Lo-
cal Binary Pattern (LBP), Discrete Cosine Transform (DCT),
and Support Vector Machines (SVM) for detection. However,
existing methods mainly target generic image content rather
than official documents. Most methods assess datasets using
standard metrics but fail to address real-world document
security challenges. This underscores the necessity for more
sophisticated, dual-layer detection frameworks that simulta-
neously evaluate both surface-level and contextual integrity,
particularly in the detection of forgery within formal admin-
istrative content.[2]

The verification of digital images plays an essential role
for journalism and insurance and law because original visual
evidence requires authenticity. Passive approaches evaluate an
image’s statistical data to identify tampering evidence through
irregularities. Three major signals that reveal tampering are
compression artifacts combined with lighting variations and
noise appearance. The wide usefulness of passive methods
does not prevent any detection approach from effectively
identifying all types of forgery at present. The situation
requires innovative approaches which unite two or more
detection methods into one analytical solution. The latest
research focuses on developing hybrid and machine learning
systems to enhance detection capacity for different images and
manipulation techniques.[3]

The modern digital environment uses images as its main
method of data transmission throughout media platforms and
educational institutions and healthcare facilities and political
organizations. The easy access to mobile cameras along with
advanced editing software enables everyone to manipulate
images thus creating doubts about their authenticity. When
used for entertainment purposes forged images provide ben-
efits yet their employment in purposes of misinformation
and defamation remains unethical. Manipulated images create
substantial damage to people while simultaneously lowering
the reliability of news sources and impacting what the pub-
lic believes to be accurate. Detection tools need to remain
effective for countering the risks identified. The field of
image forensics investigates both classical detection methods
and machine learning algorithms as solutions to eliminate
image forgery. This assessment includes a detailed study
that investigates multiple detection techniques including su-

pervised and unsupervised learning techniques and current
deep learning systems. The field requires scalable real-time
systems since existing solutions show limited performance
under compression and transformations. The author promotes
future developments which should unite contextual knowledge
with effective computational capabilities.[4]

The rapid progress in multimedia technologies has led
to widespread availability of image and video editing tools,
which pose serious challenges in verifying media authen-
ticity. These tools, while beneficial for casual users, are
also exploited for malicious purposes like identity theft and
defamation. Detecting tampered regions in multimedia content
remains complex due to subtle alterations. The paper conducts
a comprehensive review of common manipulation techniques
including splicing, cloning, and deepfakes. It highlights the
limitations of current detection models and datasets, emphasiz-
ing the need for robust frameworks capable of handling diverse
forgery types. The study also evaluates publicly available
datasets and calls for standardized, multi-modal datasets that
reflect real-world forgery complexities. The long-term vision
involves developing privacy-aware, universal detection sys-
tems that can assist law enforcement and digital platforms in
verifying content authenticity and maintaining trust in digital
communications.[6]

Image authentication plays a critical role in distinguishing
genuine images from manipulated ones, particularly when
minor alterations such as compression are permissible. Tra-
ditional approaches often fail to differentiate acceptable mod-
ifications from malicious tampering. A technique that exploits
the stable relationships of Discrete Cosine Transform (DCT)
coefficients across JPEG blocks offers a more precise detection
strategy. The model identifies inconsistencies introduced by
tampering while tolerating artifacts from legitimate compres-
sion. It adapts effectively across different compression levels
and recompression cycles, making it robust in real-world appli-
cations. This approach sets itself apart by balancing sensitivity
to edits with tolerance for routine image processing.[18]

Digital image editing software coupled with image-sharing
services allows for more discreet image manipulation which
turns into simple transformations like resizes and JPEG com-
pression. An innovative CNN-based detection system detects
camera origins while focusing on compression resistance
through its networks design. The model becomes capable
of generalized detection by receiving training through image
data sets with varying compression levels. The technique
demonstrates superior performance in accuracy combined with
resilience over conventional detection methods according to
performance measurements. Model detection processes gain
transparency through visual analysis of intermediate layers
which enables users to trust predicted outcomes better.[15]

A statistical framework based on wavelet decomposition has
been developed as an aid for digital forensic analysis of natural
images. Such technique extracts both first-order statistical
data and second-order data which defines common image
patterns. The method detects tampered regions through its
ability to detect unexpected statistical patterns while needing
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no information about the forgery locations beforehand. The
detection system operates automatically while preventing the
requirement for embedded metadata or watermarks. Wavelet
analysis proves excellent for detecting very small alterations
in images which standard inspection methods miss while
performing across multiple tampering techniques including
splicing and region duplication. [20]

A passive tampering detection method was developed based
on estimating JPEG quantization tables. The technique begins
by analyzing AC DCT coefficients and estimating quantization
step sizes using Power Spectrum Density (PSD) analysis and
Fourier transforms. It then isolates candidate regions presumed
to be untampered, excluding suspicious zones. These regions
are expanded through a region-growing method to minimize
inclusion of altered content. The estimated quantization table
serves as a reference for block-level inconsistency checks,
employing a Maximum Likelihood Ratio (MLR) classifier to
detect tampered areas. Experimental validations show high
accuracy in identifying manipulated sections, especially in
compressed images.[19]

III. SYSTEM ARCHITECTURE

Fig. 1. Proposed System Architecture for Explainable Image Forgery Detec-
tion

The system architecture for the proposed image forgery
detection method integrates both Local Binary Pattern (LBP)
and Discrete Cosine Transform (DCT) based feature extrac-
tion techniques for robust chrominance analysis. The RGB
input image is first converted to the YCbCr color space, and
chrominance channels are processed using overlapping block
division. LBP features are extracted and transformed using
2D-DCT, resulting in compact descriptors. These features are
standardized and fed into a Linear SVM classifier for binary
classification (real vs fake). To enhance interpretability, LIME
is applied to explain the SVM model’s predictions. This
pipeline ensures both accuracy and explainability in digital
image forensics.

IV. METHODOLOGY

A. Dataset Description

The research used two image forgery detection datasets
which were developed by the Institute of Automation Chinese
Academy of Sciences (CASIA) and named CASIA Image

Tampering Detection Evaluation Database v1.0 and v2.0.
These datasets help establish reliable detection tests because
they present diverse manipulation methods across numerous
image characteristics with regard to content materials and
compression techniques and picture resolution types.

The CASIA v2.0 database presents a substantial challenge
by providing 14,928 images which include 7,437 real and
7,491 forged samples. This dataset shows complex tampered
pictures which include copy-move, splicing and object re-
moval manipulations that human observers find challenging to
identify. Advanced editing programs perform tampering that
requires JPEG compression to store the data but introduces
multiple processing artifacts along with additional image noise
to the data.

During the initial stage the dataset contained uneven class
distributions that could result in training biases of the model
system. The chosen data augmentation techniques included
flipping as well as rotation along with minor geometric
transformations to achieve balanced classes in the dataset and
improve model generalization power.

Our proposed method consisting of chrominance-based
separation, block-based Local Binary Patterns and Discrete
Cosine Transform extracted features for all images contained
in the dataset.

Fig. 2. Images present in the Authentic folder of CASIA 2.0 dataset.

Fig. 3. Shows the Images Present in Tampered Folder of CASIA 2.0

On the other hand, the CASIA v1.0 dataset, though smaller
in size, serves as an important complementary benchmark
for validating the generalization of our approach. It consists
of 1,711 images, with 790 real and 921 tampered samples.
The tampering in this dataset primarily involves cut-and-paste
(splicing) and copy-move operations, which are relatively sim-
pler compared to the manipulations found in v2.0. However,
the images are still useful for training and testing, especially
in cases where models are evaluated for robustness across
multiple datasets.
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To create a more diverse and challenging evaluation en-
vironment, we combined both datasets into a single unified
dataset. This merged dataset brings together variations in
manipulation types, image sources, and quality levels, allowing
the model to learn from a richer distribution of forgeries. Such
a combination not only improves detection accuracy but also
enhances the explainability and robustness of the system when
deployed on real-world data.

B. Preprocessing Pipeline

To ensure consistent and meaningful feature extraction, all
input images undergo a systematic preprocessing pipeline.
Initially, each RGB image is converted into the YCrCb color
space, a widely adopted color representation in image process-
ing tasks. The YCrCb space separates an image’s luminance
component (Y) from its chrominance components (Cr and
Cb), where Cr represents the red-difference and Cb the blue-
difference chroma channels.

This separation is crucial for image forgery detection as
manipulations often leave subtle traces in the chrominance
components due to inconsistencies in compression, blending,
or lighting that are less perceptible in luminance.

Mathematically, the transformation from RGB to YCrCb is
defined as:

Y = 0.299R+ 0.587G+ 0.114B

Cr = (R− Y )× 0.713 + 128

Cb = (B − Y )× 0.564 + 128

This formulation maps the RGB space into luminance (Y)
and two chroma components (Cr and Cb), with added offsets
(typically 128) to maintain the dynamic range for digital
image representation. For example, consider an RGB pixel
with values R = 100, G = 150, and B = 200. Applying the
above transformation yields:

Y = 0.299× 100 + 0.587× 150 + 0.114× 200 = 137.15

Cr = (100− 137.15)× 0.713 + 128 ≈ 102.5

Cb = (200− 137.15)× 0.564 + 128 ≈ 163.5

This step highlights how chrominance encodes color de-
viation information independently of brightness, making it
especially sensitive to manipulation artifacts.

Once the YCrCb representation is obtained, the Y (lumi-
nance) channel is discarded, and only the Cr and Cb channels
are retained for further analysis. The rationale behind this is
that many tampering operations—like splicing or copy-move
forgeries—introduce subtle chromatic aberrations that are hard
to detect in the intensity domain but become more evident
when examining the color distribution patterns.

These two chrominance channels (Cr and Cb), now sepa-
rated, form the input for the block-wise texture and frequency-
based analysis in the subsequent feature extraction stage.

C. Feature Extraction

To effectively distinguish between authentic and tampered
images, our system leverages a hybrid feature extraction
pipeline based on both texture and frequency domain analysis.
The feature extraction process consists of multiple stages,
namely: chrominance channel isolation, patch-wise LBP com-
putation, DCT transformation, and statistical aggregation.
Each step is designed to amplify the subtle inconsistencies
introduced during image manipulation.

The first step involves converting each input image from
the RGB color space to the YCrCb color space. This trans-
formation is crucial because it separates luminance (Y) from
chrominance information (Cr and Cb). In our approach, we
discard the Y channel and retain only Cr and Cb, since forg-
eries tend to introduce color inconsistencies more noticeably
than intensity variations.

Once the Cr and Cb channels are isolated, the image
is divided into smaller overlapping blocks using a sliding
window approach. For instance, using a block size of 32× 32
pixels and a stride of 16 ensures that each region of the
image is covered multiple times, enhancing robustness. Each
of these blocks is then treated as an independent unit for
further processing.

Within each block, we apply the Local Binary Pattern (LBP)
operator to extract texture descriptors. LBP is a powerful yet
simple method to describe local spatial patterns. For a given
central pixel in a grayscale image, LBP works by comparing
it with its surrounding neighbors. If the neighbor pixel value
is greater than or equal to the center pixel, a 1 is assigned;
otherwise, a 0. This results in a binary pattern of length P
(number of neighbors), which is then converted into a decimal
number. Mathematically, the LBP value at a pixel (x, y) is
given by:

LBPP,R(x, y) =
P−1∑
p=0

s(ip − ic) · 2p (1)

where ic is the intensity of the center pixel, ip is the intensity
of the p-th neighbor, and the function s(x) is defined as:

s(x) =

{
1, if x ≥ 0

0, otherwise

For example, suppose a 3×3 patch has a center pixel value
of 50, and surrounding pixel values are [55, 60, 45, 49, 51, 30,
20, 70]. Comparing each neighbor with the center (50) results
in a binary pattern like 1 1 0 0 1 0 0 1, which converts to the
decimal value 201.
Once the LBP features are computed for both the Cr and
Cb channels of each block, we apply the Discrete Cosine
Transform (DCT) to capture frequency domain information.
DCT is particularly useful because it compacts the signal
energy into a few coefficients, emphasizing sharp changes or
discontinuities—common in tampered regions.

The 2D DCT of a block f(x, y) of size N ×N is defined
as:
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Fig. 4. Visualization of extracted LBP features from Cr and Cb channels

F (u, v) =
1

4

N−1∑
x=0

N−1∑
y=0

f(x, y) cos

(
(2x + 1)uπ

2N

)
cos

(
(2y + 1)vπ

2N

)
(2)

where u, v = 0, 1, ..., N − 1. The resulting coefficients
F (u, v) describe the frequency content in horizontal and
vertical directions. In our case, the DCT is applied to the
LBP map, enhancing the representation of fine-grained texture
changes.

Fig. 5. Visualization of DCT-transformed LBP features representing fre-
quency components

Following DCT, we compute the standard deviation across
all blocks for each channel (Cr and Cb) to summarize the
variability in texture-frequency response. Finally, we flatten
and concatenate the two vectors into a single feature vector
for each image. This vector becomes the input for the classi-
fication model.

This hybrid extraction process leverages both local texture
irregularities (via LBP) and frequency distortions (via DCT),
making it well-suited for detecting subtle signs of forgery.

D. Classification Model

In this work, we utilize a Linear Support Vector Machine
(SVM) classifier to discriminate between real and tampered
images based on the extracted LBP-DCT features. The choice
of SVM is motivated by its ability to handle high-dimensional
data efficiently while providing a robust decision boundary
with solid theoretical foundations. The extracted features, de-
rived from chrominance-based LBP and DCT transformations,
form a fixed-length vector for each image, which serves as
input to the SVM classifier.

The objective of a linear SVM is to find the optimal
hyperplane that separates the data into two classes—in our
case, Fake and Real images—with the maximum margin.
Mathematically, this is represented by the decision function:

f(x) = wTx+ b (3)

Here, x ∈ Rn is the input feature vector, w ∈ Rn is the
weight vector, and b ∈ R is the bias term. The classifier
predicts the label of an input sample x based on the sign of
f(x): a positive value indicates one class (e.g., Real), while a
negative value indicates the other (e.g., Fake).

To find the optimal hyperplane, the SVM solves the follow-
ing optimization problem:

min
w,b

1

2
∥w∥2 s.t. yi(w

Txi + b) ≥ 1, ∀i (4)

where (xi, yi) are the training samples and their correspond-
ing class labels (yi ∈ {−1,+1}). This formulation ensures
that the margin between the two classes is maximized while
correctly classifying all training samples.

In cases where perfect linear separability is not possible, a
soft-margin SVM introduces slack variables ξi and a regular-
ization parameter C to allow some misclassifications:

min
w,b,ξ

1

2
∥w∥2+C

n∑
i=1

ξi s.t. yi(w
Txi+b) ≥ 1−ξi, ξi ≥ 0 (5)

In our implementation, we use the LinearSVC class
from Scikit-learn, which solves the above optimization using
coordinate descent. The regularization parameter C is selected
through empirical testing to balance margin maximization and
misclassification penalties.

Example: Consider a simplified 2D example where the
feature vector x = [3, 4], the weight vector learned by the
model is w = [0.5,−0.4], and the bias b = 1.2. Then, the
decision function becomes:

f(x) = (0.5)(3) + (−0.4)(4) + 1.2

= 1.5− 1.6 + 1.2 = 1.1

Since f(x) > 0, this sample is classified as belonging to
the Real class. If f(x) had been negative, it would be labeled
as Fake.

Before training the SVM, we normalize the feature vectors
using z-score standardization, ensuring that each feature has
zero mean and unit variance. This scaling is crucial for SVMs
as it ensures that all features contribute equally to the decision
boundary.

Furthermore, we adopt 5-fold stratified cross-validation to
evaluate the classifier’s generalizability. This process splits the
dataset into five subsets while preserving the proportion of real
and fake samples in each fold, ensuring a fair evaluation.
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E. Explainability with LIME

While traditional machine learning models such as Support
Vector Machines (SVMs) are powerful for classification tasks,
they are often considered “black boxes” due to the lack of
transparency in their decision-making process. To address this,
we incorporate LIME (Local Interpretable Model-agnostic
Explanations) into our system to make the forgery detection
process more interpretable and trustworthy.

LIME works by approximating the global model locally
around the specific data point being predicted. This is achieved
by generating perturbed versions of the input (in our case,
the LBP-DCT-based feature vector) and observing the impact
of these perturbations on the classifier’s output. Essentially,
LIME fits a simple, interpretable model (such as a sparse linear
regression) in the local vicinity of the sample of interest. This
local model mimics the behavior of the complex SVM clas-
sifier within that localized region, allowing us to understand
which features most strongly influenced the final decision.

To understand how the underlying classifier behaves, con-
sider the decision function of a linear SVM, which is defined
as:

f(x) = wTx+ b (6)

Here, x ∈ Rn is the input feature vector (in our case, the
extracted features from the image), w ∈ Rn is the weight
vector learned by the SVM, and b ∈ R is the bias term. The
sign of f(x) determines the class label (e.g., Fake or Real),
and the magnitude represents the confidence of the decision.

As an example, suppose a sample image results in a 4-
dimensional feature vector:

x = [0.8,−1.2, 0.5, 2.0]

and assume the learned SVM weight vector and bias are:

w = [1.1,−0.9, 0.4, 0.7], b = −0.5

Then the decision function would be:

f(x) = (1.1)(0.8) + (−0.9)(−1.2) + (0.4)(0.5) + (0.7)(2.0)− 0.5

= 0.88 + 1.08 + 0.2 + 1.4− 0.5 = 3.06

Since f(x) > 0, the sample is classified as “Real” with high
confidence.

When LIME is applied, it perturbs this input feature vector
by randomly modifying values and evaluates the impact on
the prediction. By doing this for many such variations, LIME
builds a dataset of perturbed instances and corresponding SVM
outputs. It then fits a local surrogate model, such as a linear
regression:

g(z) = θT z (7)

where z is a perturbed version of the input and θ represents
the importance of each feature locally. The coefficients θ
indicate the strength and direction of influence of each feature
for that specific prediction.

In our project, we use this explanation to generate a visual
bar plot where top contributing features are highlighted. Pos-
itive contributions (favoring “Real”) are shown in green, and
negative ones (favoring “Fake”) in red. This not only helps in
auditing the model’s decision but also builds confidence in the
system’s robustness, which is especially important in forensic
applications where transparency is critical.

V. EXPERIMENTAL RESULTS

The evaluation of the proposed LIME-SVM-based frame-
work was conducted on two fronts: first using the CASIA
2.0 dataset and then with a combined dataset comprising
samples from multiple sources. Evaluation metrics such as
precision, recall, F1-score, and AUC were used, along with
model explainability through LIME.

A. Evaluation on CASIA 2.0 Dataset

Fig. 6. Confusion Matrix for model trained on CASIA 2.0 dataset.

Fig. 6 shows the confusion matrix for the CASIA 2.0
dataset, where the classifier predicted 7489 fake images and
7437 real images correctly, with only 2 misclassifications.

Fig. 7. Classification Report on CASIA 2.0 dataset.

The classification report in Fig. 7 validates this by showing
a precision, recall, and F1-score of 1.00 for both classes,
indicating perfect performance on this dataset.
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B. Evaluation on Combined Dataset

Fig. 8. Confusion Matrix for model trained on combined dataset.

As shown in Fig. 8, the classifier maintained high accuracy
on the combined dataset. It correctly identified 7631 fake and
7726 real images, though it misclassified 781 fake and 501
real images.

Fig. 9. Classification Report on Combined Dataset.

The classification report in Fig. 9 shows a precision and
recall of approximately 0.92 for both classes, demonstrating
robust performance under more diverse conditions.

C. Cross-Validation Metrics
In Fig. 10, the precision-recall curve demonstrates an AUC

of 0.94, indicating high precision and recall even when the
dataset may be slightly imbalanced.

Fig. 11 shows the ROC curve with an AUC of 1.00, reflect-
ing excellent discriminatory power of the classifier between
the fake and real classes.

D. Model Explainability Using LIME
In Fig. 12, LIME provides an interpretability layer by

identifying and visualizing the most influential features for a
prediction. Green bars represent features positively contribut-
ing to the classification decision, while red bars signify neg-
ative influence. For instance, the feature feature_1313 >

Fig. 10. Precision-Recall Curve with AUC = 0.94.

Fig. 11. ROC Curve with AUC = 1.00.

0.51 had a strong positive impact on classifying the sample as
fake, while features such as feature_953 in (-0.61,
0.02) had the opposite effect. This level of interpretability is
crucial for understanding model behavior in critical forensics
applications.

E. Summary of Results

The results show that the model achieves perfect clas-
sification on the CASIA 2.0 dataset and maintains strong
generalization capabilities on a more complex combined
dataset, achieving an overall accuracy of 92%. The ROC and
precision-recall curves indicate reliable classification behavior,
and the LIME analysis provides transparency into the model’s
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Fig. 12. LIME Explanation showing local feature importance for a test
sample.

decision-making process, reinforcing trust and reliability in
practical applications.

VI. FUTURE SCOPE

The current work lays the foundation for explainable image
forgery detection by combining handcrafted feature extrac-
tion with interpretable machine learning. In the future, the
methodology can be extended by integrating deep learning-
based feature extraction with LIME or SHAP explainers to
further enhance performance and explainability. Additionally,
exploring multi-modal datasets and real-world manipulated
media from social platforms can improve model robustness.
Another potential direction is to develop lightweight versions
of the model suitable for deployment on edge devices and
mobile platforms, thereby enabling real-time forgery detection
in practical scenarios.

VII. CONCLUSION

In this study, we presented an effective and explainable
approach to image forgery detection using chromatic features,
LBP-DCT based feature extraction, and a Linear SVM clas-
sifier. The system demonstrated strong performance with an
accuracy of 92% on a combined dataset from CASIA 1.0
and CASIA 2.0. By integrating LIME for explainability, we
enhanced transparency and interpretability of the model’s pre-
dictions, which is crucial for real-world forensic applications.
This combination of performance and explainability positions
our approach as a robust solution for practical deployment in
digital media authentication.
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